
OpenMesh Python Bindings
Documentation

Release 0.0.1

RWTH Aachen University

Oct 13, 2022

Tutorial

1 Installation 3
1.1 Using pip . 3
1.2 Prebuilt Binaries . 3

2 First Steps: Creating a simple mesh 5

3 Iterators and Circulators 9
3.1 Iterators . 9
3.2 Circulators . 10

4 Properties 13

5 Index Arrays 15

6 Garbage Collection 17

7 I/O Functions 19

8 The Halfedge Data Structure 21

9 TriMesh 23

10 PolyMesh 25

11 Indices and tables 27

i

ii

OpenMesh Python Bindings Documentation, Release 0.0.1

Contents:

Tutorial 1

OpenMesh Python Bindings Documentation, Release 0.0.1

2 Tutorial

CHAPTER 1

Installation

1.1 Using pip

pip install openmesh

1.2 Prebuilt Binaries

We provide prebuilt wheels for manual installation with pip for the following configurations:

1.2.1 Linux

• Python 3.9

1.2.2 macOS

• Python 3.9 X86

• Python 3.9 ARM64 (M1)

1.2.3 Windows

• Python 3.9

1.2.4 Building from source

1. recursively clone the repo

2. cd to repo dir

3

https://gitlab.vci.rwth-aachen.de:9000/OpenMesh/openmesh-python/-/jobs/artifacts/master/browse/release?job=deploy-3.9-linux
https://gitlab.vci.rwth-aachen.de:9000/OpenMesh/openmesh-python/-/jobs/artifacts/master/browse/release?job=deploy-3.9-macos
https://gitlab.vci.rwth-aachen.de:9000/OpenMesh/openmesh-python/-/jobs/artifacts/master/browse/release?job=deploy-3.9-macos-m1
https://gitlab.vci.rwth-aachen.de:9000/OpenMesh/openmesh-python/-/jobs/artifacts/master/browse/release?job=deploy-3.9-VS2017

OpenMesh Python Bindings Documentation, Release 0.0.1

3. ensure the correct virtualenv is activated

4. pip install -e .

4 Chapter 1. Installation

CHAPTER 2

First Steps: Creating a simple mesh

This section demonstrates how to create a new mesh, add some vertices and faces to it and then modify the newly
inserted points.

First, we will import the openmesh and numpy modules:

import openmesh as om
import numpy as np

Next, we can create an empty mesh:

mesh = om.TriMesh()

OpenMesh provides two mesh types: One for polygonal meshes (PolyMesh) and one for triangle meshes (TriMesh).
You should use triangle meshes whenever possible, since they are usually more efficient. In addition, some algorithms
are only implemented for triangle meshes while triangle meshes inherit the full functionality of polygonal meshes.

Now that we have our empty mesh object we can add a couple of vertices:

vh0 = mesh.add_vertex([0, 1, 0])
vh1 = mesh.add_vertex([1, 0, 0])
vh2 = mesh.add_vertex([2, 1, 0])
vh3 = mesh.add_vertex([0,-1, 0])
vh4 = mesh.add_vertex([2,-1, 0])

The add_vertex() member function takes numpy arrays with shape (3,) as point coordinates and returns a handle
to the newly inserted vertex. As shown in the code above we can also pass lists with 3 elements as point coordinates.
The lists are automatically converted to numpy arrays.

In order to add a new face to our mesh we have to call add_face(). This function takes the handles of the vertices
that make up the new face and returns a handle to the newly inserted face:

fh0 = mesh.add_face(vh0, vh1, vh2)
fh1 = mesh.add_face(vh1, vh3, vh4)
fh2 = mesh.add_face(vh0, vh3, vh1)

5

OpenMesh Python Bindings Documentation, Release 0.0.1

We can also pass a list of vertex handles to add_face():

vh_list = [vh2, vh1, vh4]
fh3 = mesh.add_face(vh_list)

Our mesh should now look like this:

0 ==== 2
|\ 0 /|
| \ / |
|2 1 3|
| / \ |
|/ 1 \|
3 ==== 4

We can access the point coordinates of each vertex by calling point(). This member function takes a vertex handle
and returns a numpy array with shape (3,):

point = mesh.point(vh0)

We can also get an array containing all points of a mesh by calling points(). The returned array has shape (n, 3),
where n is the number of vertices:

point_array = mesh.points()

The latter is useful if we want to update all points of a mesh at once. For example, we can translate our mesh along
the x-axis like this:

point_array += np.array([1, 0, 0])

The arrays returned by point() and points() both reference the underlying mesh data. This means that changes
made to either one of these arrays affect the original mesh.

The complete source for this section looks like this:

import openmesh as om
import numpy as np

mesh = om.TriMesh()

add a a couple of vertices to the mesh
vh0 = mesh.add_vertex([0, 1, 0])
vh1 = mesh.add_vertex([1, 0, 0])
vh2 = mesh.add_vertex([2, 1, 0])
vh3 = mesh.add_vertex([0,-1, 0])
vh4 = mesh.add_vertex([2,-1, 0])

add a couple of faces to the mesh
fh0 = mesh.add_face(vh0, vh1, vh2)
fh1 = mesh.add_face(vh1, vh3, vh4)
fh2 = mesh.add_face(vh0, vh3, vh1)

add another face to the mesh, this time using a list
vh_list = [vh2, vh1, vh4]
fh3 = mesh.add_face(vh_list)

0 ==== 2
|\ 0 /|

(continues on next page)

6 Chapter 2. First Steps: Creating a simple mesh

OpenMesh Python Bindings Documentation, Release 0.0.1

(continued from previous page)

| \ / |
|2 1 3|
| / \ |
|/ 1 \|
3 ==== 4

get the point with vertex handle vh0
point = mesh.point(vh0)

get all points of the mesh
point_array = mesh.points()

translate the mesh along the x-axis
point_array += np.array([1, 0, 0])

7

OpenMesh Python Bindings Documentation, Release 0.0.1

8 Chapter 2. First Steps: Creating a simple mesh

CHAPTER 3

Iterators and Circulators

This section demonstrates how to use mesh iterators and circulators. The example outputs on this page are based on
the mesh from the previous section, which looks like this:

0 ==== 2
|\ 0 /|
| \ / |
|2 1 3|
| / \ |
|/ 1 \|
3 ==== 4

3.1 Iterators

Iterators make it possible to enumerate the items of a mesh. For example, the code below iterates over all vertices of a
mesh:

for vh in mesh.vertices():
print(vh.idx())

Using the mesh from the previous section, this will produce the following output:

0
1
2
3
4

Note: Iterators and circulators return handles to mesh items instead of the items themself. For example, the vertex
iterator returns vertex handles instead of actual vertices/points. You can access the vertex coordinates by calling
point() with the appropriate vertex handle.

9

OpenMesh Python Bindings Documentation, Release 0.0.1

We can also iterate over all halfedges, edges and faces by calling halfedges(), edges() and faces() respec-
tively:

iterate over all halfedges
for heh in mesh.halfedges():

print(heh.idx())

iterate over all edges
for eh in mesh.edges():

print(eh.idx())

iterate over all faces
for fh in mesh.faces():

print(fh.idx())

3.2 Circulators

Circulators provide the means to iterate over items adjacent to another item. For example, to iterate over the 1-ring of
a vertex we can call vv(), which is short for vertex-vertex circulator, and pass the handle of the center vertex:

for vh in mesh.vv(vh1):
print(vh.idx())

Using the mesh from the previous section, this will produce the following output:

4
3
0
2

We can also iterate over the adjacent halfedges, edges and faces of a vertex:

iterate over all incoming halfedges
for heh in mesh.vih(vh1):

print(heh.idx())

iterate over all outgoing halfedges
for heh in mesh.voh(vh1):

print(heh.idx())

iterate over all adjacent edges
for eh in mesh.ve(vh1):

print(eh.idx())

iterate over all adjacent faces
for fh in mesh.vf(vh1):

print(fh.idx())

To iterate over the items adjacent to a face we can use the following functions:

iterate over the face's vertices
for vh in mesh.fv(fh0):

print(vh.idx())

iterate over the face's halfedges

(continues on next page)

10 Chapter 3. Iterators and Circulators

OpenMesh Python Bindings Documentation, Release 0.0.1

(continued from previous page)

for heh in mesh.fh(fh0):
print(heh.idx())

iterate over the face's edges
for eh in mesh.fe(fh0):

print(eh.idx())

iterate over all edge-neighboring faces
for fh in mesh.ff(fh0):

print(fh.idx())

3.2. Circulators 11

OpenMesh Python Bindings Documentation, Release 0.0.1

12 Chapter 3. Iterators and Circulators

CHAPTER 4

Properties

TODO

13

OpenMesh Python Bindings Documentation, Release 0.0.1

14 Chapter 4. Properties

CHAPTER 5

Index Arrays

TODO

15

OpenMesh Python Bindings Documentation, Release 0.0.1

16 Chapter 5. Index Arrays

CHAPTER 6

Garbage Collection

TODO

17

OpenMesh Python Bindings Documentation, Release 0.0.1

18 Chapter 6. Garbage Collection

CHAPTER 7

I/O Functions

OpenMesh provides functions that read and write meshes from and to files: read_trimesh(),
read_polymesh() and write_mesh()

import openmesh as om

trimesh = om.read_trimesh("bunny.ply")
polymesh = om.read_polymesh("bunny.ply")
modify mesh ...
om.write_mesh(trimesh, "bunny.ply")

OpenMesh currently supports five file types: .obj, .off, .ply, .stl and .om

For writing .obj files there is also support for textures. You can pass the path of a texture image and optionally the
suffix for the material file, default is “.mat”, but some programs, e.g. Blender expect “.mtl” as suffix

om.write_mesh(
"out.obj",
trimesh,
texture_file="moon.png",
material_file_extension=".mtl" # default is ".mat", blender needs ".mtl"

)

19

OpenMesh Python Bindings Documentation, Release 0.0.1

20 Chapter 7. I/O Functions

CHAPTER 8

The Halfedge Data Structure

This section describes the underlying data structure that is used to store the mesh vertices, edges and faces, as well as
their connectivity information.

There are many popular data structures used to represent polygonal meshes. For a detailed comparison of them refer
to the papers at the end of this section.

The data structure used in this project is the so called halfedge data structure. While face-based structures store their
connectivity in faces referencing their vertices and neighbors, edge-based structures put the connectivity information
into the edges. Each edge references its two vertices, the faces it belongs to and the two next edges in these faces. If
one now splits the edges (i.e. an edge connecting vertex A and vertex B becomes two directed halfeges from A to B
and vice versa) one gets a halfedge-based data structure. The following figure illustrates the way connectivity is stored
in this structure:

• Each vertex references one outgoing halfedge, i.e. a halfedge that starts at this vertex (1).

• Each face references one of the halfedges bounding it (2).

• Each halfedge provides a handle to

– the vertex it points to (3),

– the face it belongs to (4),

– the next halfedge inside the face (ordered counter-clockwise) (5),

– the opposite halfedge (6),

– the previous halfedge in the face (7).

Having these links between the items, it is now possible to circulate around a face in order to enumerate all its vertices,
halfedges, or neighboring faces. When starting at a vertex’ halfedge and iterating to the opposite of its previous
one, one can easily circulate around this vertex and get all its one-ring neighbors, the incoming/outgoing halfedges,
or the adjacent faces. All this functionality is encapsulated into the so-called circulators, described in Iterators and
Circulators.

21

OpenMesh Python Bindings Documentation, Release 0.0.1

Note: In order to efficiently classify a boundary vertex, the outgoing halfedge of these vertices must be a boundary
halfedge (see is_boundary()). Whenever you modify the topology using low-level topology changing functions,
be sure to guarantee this behaviour (see adjust_outgoing_halfedge()).

While the halfedge-based structures usually consume more memory than their face-based counter-parts they have the
following important advantages:

• It is easy to mix faces of arbitrary vertex count in one mesh.

• We now have an explicit representation of vertices, faces, and edges/halfedges. This becomes extremely useful
if one has to store data per edge/halfedge since this can easily be modelled by member variables of these types.

• Circulating around a vertex in order to get its one-ring neighbors is an important operation for many kinds of
algorithms on polygonal meshes. For face-based structures this leads to many if-then branchings, the halfedge
structure provides this funcionality without conditional branching in constant time.

22 Chapter 8. The Halfedge Data Structure

CHAPTER 9

TriMesh

23

OpenMesh Python Bindings Documentation, Release 0.0.1

24 Chapter 9. TriMesh

CHAPTER 10

PolyMesh

25

OpenMesh Python Bindings Documentation, Release 0.0.1

26 Chapter 10. PolyMesh

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

27

	Installation
	Using pip
	Prebuilt Binaries

	First Steps: Creating a simple mesh
	Iterators and Circulators
	Iterators
	Circulators

	Properties
	Index Arrays
	Garbage Collection
	I/O Functions
	The Halfedge Data Structure
	TriMesh
	PolyMesh
	Indices and tables

